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The low-energy ^>-wave pion-nucleon scattering amplitude is represented by a single Regge pole in the 
direct channel with correct analytical properties. The three parameters of the trajectory at threshold have 
been determined. From the residue of the pole at the nucleon position the irN coupling constant is determined 
to be g2= 13.68. The agreement at high energies is poor. A possible explanation of the discrepancy is that the 
analytically continued partial-wave amplitude at / = J does not coincide with the physical amplitude. The 
difference is shown, from unitarity, to be approximately given at threshold by the contribution of an ele
mentary nucleon pole. With such a term a good agreement is obtained up to 100 MeV with Woolcook's data 
and g2 is found to be 13.03. 

I. INTRODUCTION 

RECENTLY, considerable attention has been given 
to the question whether the nucleon can be con

sidered as a bound state of the TT-N system lying on a 
Regge trajectory.1-3 More precisely, whether the ir-N, 
I=i ^-wave partial-wave amplitude analytically con
tinued in angular momentum down to / = § coincides 
with the physical amplitude and has the correct pole 
and the residue. This hypothesis may be checked 
through an analysis of the low-energy p-w&ve pion-
nucleon scattering data because at these energies the 
amplitude is expected to be dominated by a single pole 
in the direct channel. We recall that a similar situation 
occurs in the case of n-p scattering where the low-energy-
triplet scattering data can be fitted rather well with 
one Regge pole in the direct channel and, when extra
polated, does give the deuteron binding energy.4 Some 
differences might be expected in the ir-N case, because 
N is not a loosly bound state of TN system. Khuri and 
Udgaonkar5 have recently computed the I=% T-N 
phase shifts on the basis of a single linear trajectory 
passing through the nucleon and N* ( / = f , / = § ) . I n 

the present calculation, we take into account the exact 
threshold behavior of the trajectory and the restrictions 
imposed by unitarity. I t is shown that the single-pole 
hypothesis leads to some discrepancies. A possible 
explanation of these discrepancies is that the analytic 
continuation of the ^-wave amplitude does not coincide 
with the physical amplitude at / = § , and that we have 
also the contribution of an elementary pole. The w-N 
coupling constant and the threshold parameters of the 
trajectory have been determined with and without an 
"elementary pole." 
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II. THE PION-NUCLEON TRAJECTORY 

If one assumes a Regge representation for the ampli
tude, the contribution of a single trajectory to the 
relevant p-w&ve amplitude a+J(v), where + indicates 
the amplitude with " / = / + § , is given by6 

1 0(„) 
^ 1 / 2 ^ ) = [ e [ a ( O - l / 2 ] a + e [ « ( i 0 - - l / 2 H 2 ] > (1 ) 

2aW-i 
where 

£i=cosh~ 

fc^cosh-1 1 + -
m2 (m2—M2)2~| 

2v 2vs J 
(2) 

v is the square of the center-of-mass momentum, s the 
square of the center-of-mass energy, m and /JL are the 
nucleon and the pion masses, a(v) the I—\ trajectory, 
and (3(v) its residue. The normalization of the amplitude 
is such that the elastic unitarity condition has the form 

Ima4.==(y/V)1/2fl+fl+*-

The behavior of a and 0, however, cannot be specified 
arbitrarily to be, for example, a straight line, because 
they are subject to restrictions imposed by unitarity. 
In particular, for small \v\, these quantities must have 
the form7 

Yv v 
aW=a(0) +002) 

Yj V 

a(v)+l/2 

aO)+l/2 

b{v), 

FAV-

Xexp{-»[>«+§]}, (3) 

(4) 

8 For the analytic continuation in / of the pion-nucleon ampli
tude see, for example, V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 
41, 1962 (1961) [English transl.: Soviet Phys.—JETP 14, 1395 
(1962)]; V. Singh, Phys. Rev. 129, 1889 (1963). We have also used 
the modification of the Watson transform giving the correct cut 
in z of the amplitude: N. Khuri, Phys. Rev. 130, 429 (1963). 

7 A. O. Barut and D. Zwanziger, Phys. Rev. 127, 974 (1963). 
The results of this paper are easily extended to the pion-nucleort 
case. 
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FIG. 1. The real part of the trajectory a is plotted against 
energy for two cases when the difference f(v) between the ana
lytically continued and the physical amplitude, [Eq. (23)], is 
zero or equal to the contribution of an elementary pole. For com
parison the linear trajectory connecting N and N* is also shown. 

where Yv and Yj are the real derivatives at v=0 of a 
real analytic function Y(v,J) which has a right-hand 
cut beginning at the inelastic threshold. The quantity 
b{v) will be assumed to be a slowly varying function of 
v which is finite at J>=0. We can then write in the neigh
borhood of threshold 

6 („) «6(0) = cos7r[a(0) - \~\lYj, (5) 

so that the amplitude is finally given by 

c o s i r [ a ( 0 ) - | ] / v yC'H1/* 

2 F j [ a W - i ] \ V / 

X[e[a(v)-ll2]ti+e[a(v)-ll2]Z2']. (6) 

a+^{v) = -

The three parameters determining a(v) and /?(?>), 
namely a(0), Yj and F„, can be determined from the 
threshold behavior of the amplitude a+

1/2(v). The hy
pothesis of the dominance of a single trajectory is then 
checked by calculating a+

1/2(v) at higher energies and 
by computing the ir-N coupling constant from the resi
due at the nucleon position. From Eq. (2) and the limit 

cosh-%->ln22;+0(l/2;), 

it is seen that the amplitude (6) has the correct ^-wave 
threshold behavior. We take the following three rela
tions to determine the three parameters 

a+0) 

d a+(v) 

-0 .104, 

= 0 .095, 

in uni t s of /x= 1 as given b y Woolcook,8 and the condi
t ion t h a t the nucleon is on the trajectory, i.e., CL{VN) — ^, 
where 

VN= — M 2 ( l~M 2 /4^ 2 ) . 
8 W. S. Woolcook, Ph.D. thesis, reproduced in J. Hamilton, 

P. Menotti, G. C. Oades, and L. L. J. Vick, Phys. Rev. 128,1881 
(1962). 

The calculation yields 

a(0) = 0.125, F j = - 1 0 . 0 8 , F„=5.57, 

and the residue of the pole at VN gives for the coupling 
constant 

g2= 13.68. 

The resulting curves for the trajectory and the ampli
tude are given in Figs. 1 and 2 as curves marked f(v) = 0, 
with Woolcook's data and the linear a(v) between N 
and iV* for comparison. The choice of the condition 
«(^JV) = | is for convenience because of the trancen-
dental nature of the form of a(v) in Eq. (3); instead of 
this condition an amplitude value near threshold, at, 
say, 10 MeV could have been taken with exactly the 
same result. 

The results obtained in this way are perhaps not too 
satisfactory. The discrepancy at higher energies both 
in amplitude and in the expected behavior of the tra
jectory may be explained by other nearby singularities. 
Although it is possible that this is indeed the case we 
shall, however, suggest a second possibility. 

III. EXTRAPOLATION TO THE POLE 

We recall t h a t in the relativistic theory the continua
tion in angular m o m e n t u m is carried ou t from a dis
persion relation of the type9 ,10 

A(s,t) = + C + - / dt'At{sA , (7) 
s—m2 ir J to Ltr—t / ' J 

where we have assumed, for defmiteness, one bound 
state and one subtraction, and have omitted the ex
change term. The physical amplitude Ai{s) is given by 
the projection 

g2 i r 
Ai(s) = 5lQ+C8l0+- / MAt(s/). 

s—m2 ir J to 

L2^ \ 2v) HA 
(8) 

However, as it stands, this expression cannot be used to 

O 20 40 60 80 100 120 
T»PI0N LAB ENERGY (MeV) 

FIG. 2. The real part of the ^>-wave amplitude ( / = } , / = J) 
as a function of energy for the two cases as in Fig. 1 compared 
to Woolcook's data. 

9 V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41, 1962 (1961) 
[English transl.: Soviet Phys.—JETP 14, 1395 (1962)]. 

10 M. Froissart, Phys. Rev. 123, 1053 (1961). 
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make a satisfactory continuation in / satisfying the 
criteria of Carlson's theorem that it behaves asymp
totically for large \l\ and for Re/>/o as Ai(s) 
= 0(exp \ | / | ) , X<7r.n This condition is necessary to 
insure the uniqueness of the continuation and to make 
possible the Watson-Sommerfeld transformation. The 
function 8i0, however, vanishes at all integers 1^1, and 
therefore has no continuation with the above bound. 
The custumary way to avoid this difficulty is to note 
that for l^ 1 Eq. (8) becomes 

Ai(s)= [ dt?AtW)Qi(l+-), (9) 
2irv J to \ 2vf 

which now satisfies Carlson's criteria and may be used 
to define an analytic continuation A(l,s) in R e / ^ 1 . 
This continuation agrees with the physical amplitude 
Ai(s) for Z=l , 2, 3 • • •. If no natural boundary exists, 
A (l,s) can now be continued further to the left to the 
region of singularities. The difficulty now, however, is 
that there is no guarantee that this continuation A (0,s) 
will give back the physical amplitude AQ(S) at 1=0, 
for any amplitude of the form 

A(s,f)=A(s,t)+f(s), (10) 

where f(s) is an arbitrary function of s, will have the 
same projection for / ^ 1 as A (s,t), and hence, the con
tinuation down to / = 0 is ambiguous. 

If the nucleon is really a dynamical bound state of 
the TT-N system then the pole term in the Mandelstam 
representation (7) should be omitted altogether, it 
should come automatically as a result of analytic 
continuation. This case corresponds to the discussion 
of the previous section, I I . If on the other hand there 
is some additional contribution the continued function 
and the physical amplitude are then related by 

A(0,s) = Ao(s)+f(s). (11) 

We now use the fact that both the physical and the 
continued amplitude satisfy the unitarity condition 
for £=0, the former by definition, the latter from the 
continuation of the unitarity. Because both A (0,s) and 
AQ(S) are required by this condition to be real below 
threshold, it follows immediately that 

f(s) is real below threshold. (A) 

In the elastic region the unitarity has the form 

ImA(0,s) = \\A(0,s)\2, (12) 

where X is a constant depending on normalization. From 
(11), this gives 

ImtA0(s)+f(s)l = \\Ao(s)+f(s)\* (13) 

which, because Irm4 o (s) = X | A o (s) |2, reduces to 

Im/( j ) = X{DRe/( j ) ] 2 +[Im/( j ) ] 2 +2 RtA0(s) Imf(s) 
+21mAo(s)Ref(s)}. (14) 

1 1E. C. Titchmarsh, The Theory of Functions (Oxford Uni
versity Press, London, 1939), 2nd ed., p. 186. 

Using the reality of f(s) at threshold we obtain in the 
limit lmf(s) > 0 

2 ReAQ(s) R e / ( * ) + [ R e / ( j ) ] 2 = 0 , *>->0+. (B) 

We therefore conclude that f(s) must be such that 
either 

/ ( * ) - > 0 as v->0+ (15) 
or 

f(s)-*-2RtA0(s) as v->0+. (16) 

The first condition evidently comes from the possibility 
/($)== 0, i.e., that A (0,s) and AQ(S) are in fact the same. 
The second condition represents the possibility that 
these two amplitudes are not identical, and places an 
important restriction on f(s) which allows one to ap
proximate it near the threshold. Indeed, from (11) and 
(8), we have 

g2 1 r 
f(s) = A(0,s) C— / dt'At(s,t') 

S—m2 7T J to 

xIKi+iKI'(17) 

so that if the bound-state contribution fB= —g2/ (s—m2) 
arising from the ^iQg2/(s—m2) term is dominant at 
threshold, one gets 

f(s)^fB(s)=-g2/(s-m2)} (18) 

an assumption which can be checked by using Eq. (16) 
as we shall see. 

Finally, we note from (16) that whenever f(s) is real, 
one has 

ReA(0,s) = ±ReAo(s), v>0. (C) 

We will see that this relationship apparently depends 
only on the reality of f(s) and is true even below 
threshold. 

IV. PION-NUCLEON TRAJECTORY WITH AN 
"ELEMENTARY POLE" 

We now apply the results of the previous section to 
the pion-nucleon case. In this case, the bound-state 
contribution to the amplitude a+

1/2(s) is given by 

/B ( j ) = [ (PT-#») 2 - / i 2 ] /4TP 3g2/(W-m), W= (s)1^. 
(19) 

The value of this term in the vicinity of the threshold is 

JB(S) • 0.210V, (20) 
v->0 

in units with ju=l , where we have used jf2=0.08, 
g2= ( 4 W 2 / M 2 ) / 2 = 14.43. On the other hand Woolcook's 
value is 

R e ^ M / . ) > -0.104^-ifB(s). (21) 

Thus we see from (16) that the approximation (19) 
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is quite good, and we therefore assume 

in the energy range of calculations. We note however 
that this approximation cannot hold too far below and 
above the threshold: f(s) may become eventually 
strongly complex above threshold and the nucleon 
Regge pole will give a strong contribution below 
threshold. If we now use the continuation 

a(J=hs) = a^(s)+f(s) (23) 

with f(s) given by (22) and calculate the parameters 
of the trajectory as before, we find 

a(0) = 0.37, 7,7=2.59, F „ = - 3 . 3 7 , 

with the residue 
1 2 = - 1 3 . 0 3 . 

By the condition (C) the residue of the physical ampli
tude is then 

g2= 13.03. 

The results are again plotted in Figs. 1 and 2. As can 
be seen the agreement at high energies is much im
proved, and in addition, the trend of the trajectory is 
in better agreement with what one would expect. 

In conclusion the fit of the experimental data by a 
single trajectory with an elementary pole contribution 
seems to be much better than without such a term 
although the contribution of other singularities in the 
angular momentum plane, which are not known at 
present, may change this picture. In either case a good 
value of the coupling constant is obtained by this 
extrapolation. One should also note that we have used 
not directly experimental data but Woolcook's analysis 
of it which itself makes use of dispersion relations. 


